首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1558篇
  免费   313篇
  国内免费   102篇
化学   584篇
晶体学   128篇
力学   93篇
综合类   10篇
数学   12篇
物理学   1146篇
  2024年   3篇
  2023年   5篇
  2022年   17篇
  2021年   27篇
  2020年   35篇
  2019年   25篇
  2018年   41篇
  2017年   68篇
  2016年   60篇
  2015年   41篇
  2014年   54篇
  2013年   184篇
  2012年   72篇
  2011年   171篇
  2010年   93篇
  2009年   112篇
  2008年   95篇
  2007年   100篇
  2006年   100篇
  2005年   78篇
  2004年   76篇
  2003年   59篇
  2002年   63篇
  2001年   49篇
  2000年   50篇
  1999年   57篇
  1998年   38篇
  1997年   21篇
  1996年   25篇
  1995年   25篇
  1994年   22篇
  1993年   15篇
  1992年   16篇
  1991年   10篇
  1990年   12篇
  1989年   3篇
  1988年   7篇
  1987年   5篇
  1986年   7篇
  1985年   6篇
  1984年   10篇
  1983年   3篇
  1982年   4篇
  1981年   4篇
  1980年   1篇
  1978年   1篇
  1971年   2篇
  1966年   1篇
排序方式: 共有1973条查询结果,搜索用时 15 毫秒
1.
Pd-based catalysts are the most widely used for CO oxidation because of their outstanding catalytic activity and thermal stability. However, fundamental understanding of the detailed catalytic processes occurring on Pd-based catalysts under realistic conditions is still lacking. In this study, we investigated CO oxidation on metallic Pd clusters supported on Al2O3 and SiO2. High-angle annular dark-field scanning transmission electron microscopy revealed the formation of similar-sized Pd clusters on Al2O3 and SiO2. In contrast, CO chemisorption analysis indicated a gradual change in the dispersion of Pd (from 0.79 to 0.2) on Pd/Al2O3 and a marginal change in the dispersion (from 0.4 to 0.24) on Pd/SiO2 as the Pd loading increased from 0.27 to 5.5 wt %; these changes were attributed to differences in the metal-support interactions. Diffuse reflectance infrared Fourier-transform spectroscopy revealed that fewer a-top CO species were present in Pd supported on Al2O3 than those in Pd supported on SiO2, which is related to the morphological differences in the metallic Pd clusters on these two supports. Despite the different dispersion profiles and surface characteristics of Pd, O2 titration demonstrated that linearly bound CO (with an infrared signal at 2090 cm−1) reacted first with oxygen in the case of CO-saturated Pd on Al2O3 and SiO2, which suggests that a-top CO on the terrace site plays an important role in CO oxidation. The experimental observations were corroborated by periodic density functional calculations, which confirmed that CO oxidation on the (111) terrace sites is most plausible, both kinetically and thermodynamically, compared to that on the edge or corner sites. This study will deepen the fundamental understanding of the effect of Pd clusters on CO oxidation under reaction conditions.  相似文献   
2.
采用传统高温熔融法合成了玻璃组成为B2O3-GeO2-15GdF3-(40-x)Gd2O3-xEu2O3(0≤x≤10)的Eu^3+激活氟氧硼酸锗酸盐闪烁玻璃。在硼锗酸盐玻璃基质中,Gd2O3和GdF3稀土试剂的总含量高达55%,从而确保其密度高于6.4 g/cm^3。闪烁玻璃的光学性能通过光学透过光谱、光致发光光谱、X射线激发发射(XEL)光谱和荧光衰减曲线来表征。玻璃中Gd^3+→Eu^3+离子的能量传递通过激发光谱、发射光谱和Gd^3+-Eu^3+离子间距得到证明,同时也确定了在紫外线和X射线激发下Eu^3+激活氟氧硼酸锗酸盐闪烁玻璃的最佳浓度。Judd-Ofelt理论分析了玻璃中Eu―O键的共价性随Eu^3+掺杂浓度增加而显著增强。Eu^3+激活氟氧硼酸锗酸盐闪烁玻璃在80~470 K温度范围内荧光衰减曲线和发射光谱的温度依赖关系最终证实了其具有较好的发光稳定性。  相似文献   
3.
Nowadays, pharmaceutical antibiotics are known as a serious class of pollutants. Therefore, it is important to develop effective methods for removing these pollutants from aqueous media. Different methods were applied for this purpose, and among these methods, chemical reduction by a cheap and eco‐friendly nanocatalyst is the most efficient and simplest method. In this research, based on graphene oxide supported by zero‐valent iron in mono‐, bi‐, and tri‐metallic systems, various nanocomposites were synthesized and used to degrade tetracycline as a model antibiotic from aqueous media. An investigation was carried out on the synergic effect among graphene oxide and the nano zero‐valent iron‐based tri‐metallic system as well as removal efficiencies. It was found that higher degradation efficiency is yielded by graphene oxide supported by Fe/Cu/Ag tri‐metallic system. The maximum synergic effect occurs at an acidic medium. The Brunauer–Emmett–Teller, Fourier transform spectroscopy, scanning electron microscopy‐energy dispersive X‐ray analysis, transmission electron microscopy, and X‐ray diffraction analysis were used to characterize the synthesized nanocomposites, which has successfully proved the loading of nanoscale Fe/Cu/Ag tri‐metallic on a graphene oxide support. The central composite design was used to model and optimize all involved variables affecting antibiotic removal efficiency. The consequences illustrated the optimum condition regarding the removal of 50 ppm of tetracycline, for the nanocomposites dose of 3.0 mg ml?1, the contact time of 30 min, and pH of 2, was achieved using the simplex non‐linear optimization method. Moreover, antibiotic adsorption kinetic models were also investigated. Finally, the tetracycline removal from aqueous media at different concentrations, 25, 50, and 75 ppm, was successful by applying the proposed nanocomposite, and the results showed tetracycline removal efficiencies of above 70%.  相似文献   
4.
In this work, the ternary hybrid structure VSe2/SWCNTs/rGO is reported for supercapacitor applications. The ternary composite exhibits a high specific capacitance of 450 F g−1 in a symmetric cell configuration, with maximum energy density of 131.4 Wh kg−1 and power density of 27.49 kW kg−1. The ternary hybrid also shows a cyclic stability of 91 % after 5000 cycles. Extensive density functional theory (DFT) simulations on the structure as well as on the electronic properties of the binary hybrid structure VSe2/SWCNTs and the ternary hybrid structure VSe2/SWCNTs/rGO have been carried out. Due to a synergic effect, there are enhanced density of states near the Fermi level and higher quantum capacitance for the hybrid ternary structure compared to VSe2/SWCNTs, leading to higher energy and power density for VSe2/SWCNTs/rGO, supporting our experimental observation. Computed diffusion energy barrier of electrolyte ions (K+) predicts that ions move faster in the ternary structure, providing higher charge storage performance.  相似文献   
5.
《中国物理 B》2021,30(6):66301-066301
Dynamics of hydrogen doped Cu_(50) Zr_(50) glass-forming liquids are investigated by using the newly developed modified embedded atomic method(MEAM) potential based on molecular dynamics simulations. We find that the doping of hydrogen atoms slows down the relaxation dynamics, reduces the fragility of supercooled melts, and promotes the occurrence of glass transitions. The dynamic slowdown is suggested to be closely related to the effect of hydrogen atoms on locally ordered structure of melts. With increasing concentration of hydrogen, the five-fold symmetry associated with Cu-and Zr-centered polyhedrons is lowered, on the other hand, the local order featuring metal hydrides is enhanced. The latter dominates the dynamic behaviors of glass-forming liquids, especially for Zr atoms, and results in the dynamic slowdown.  相似文献   
6.
In this work, the g factors, dd transition band, local distortion, and their concentration dependences for impurity V4+ in 20Li2O–20PbO–45B2O3–(15 − x)P2O5:V2O5 (0 ≤ x ≤ 2.5 mol%) glasses are theoretically investigated by using perturbation formulas of g factors for a tetragonally compressed octahedral 3d1 cluster. In the light of the cubic polynomial concentration functions for cubic field parameter Dq, covalency factor N, and relative tetragonal compression ratio ρ, the calculated concentration dependences of dd transition band and g factors for V4+ show good agreement with the experimental data. With increasing x, N (≈0.7682–0.8165) displays the monotonously increasing trend, whereas ρ (≈6.5–4.2%) and Dq (≈1504.9–1481.1 cm−1) exhibit the decreasing tendencies. The above concentration dependences can be ascribed to the modifications of the V4+–O2− bonding and orbital admixtures around the impurity V4+ due to the effects of V2O5 doping on the stability of the glass network, the strength of local crystal fields, and the electron cloud distribution.  相似文献   
7.
Pauling described metallic bonds using resonance. The maximum probability domains in the Kronig–Penney model can show a picture of it. When the walls are opaque (and the band gap is large) the maximum probability domain for an electron pair essentially corresponds to the region between the walls: the electron pairs are localized within two consecutive walls. However, when the walls become transparent (and the band gaps closes), the maximum probability domain can be moved through the system without a significant loss in probability.  相似文献   
8.
The first investigation into the ultraviolet (UV) photoluminescence of gadolinium(III) in the presence of copper(II) is reported. A melt‐quenched barium phosphate glass was used as a model matrix. The optical spectroscopy assessment shows that with increasing CuO concentration the Cu2+ absorption band grows steadily, whereas the UV emission from Gd3+ ions is progressively quenched. The data, thus, suggests the existence of a Gd3+→Cu2+ energy‐transfer process ocurring through quantum cutting. A downconversion/cross‐relaxation pathway proceeding through a virtual state in Gd3+ is proposed. These findings suggest gadolinium(III) could potentially be used in the optical sensing of copper(II).  相似文献   
9.
采用传统的熔融法制备了Er~(3+)掺杂的新型铋酸盐玻璃(Li_2O-SrO-ZnO-Bi_2O_3,LSZB),并对其光谱性质进行了表征,分析了玻璃的拉曼光谱、吸收光谱、荧光光谱,利用Judd-Ofelt理论研究了其荧光特性。LSZB玻璃样品中Er~(3+)的~4I_(13/2)→~4I_(15/2)跃迁发射峰位于1.53 μm处,半高宽约为78 nm。样品中Er~(3+)的~4I_(13/2)能级寿命为2.848 ms,量子效率为99.93%,受激发射截面达到9.76×10~(-21)cm~2。以上结果显示,Er~(3+)掺杂LSZB玻璃有良好的光谱特性。  相似文献   
10.
Morphologically and dimensionally controlled growth of Ag nanocrystals has long been plagued by surfactants or capping agents that complicate downstream applications, unstable Ag salts that impaired the reproducibility, and multistep seed injection that is troublesome and time-consuming. Here, we report a one-pot electro-chemical method to fast (∼2 min) produce Ag nanoparticles from commercial bulk Ag materials in a nitric acid solution, eliminating any need for surfactants or capping agents. Their size can be easily manipulated in an unprecedentedly wide range from 35 to 660 nm. Furthermore, the Ag nanoparticles are directly grown on the Ag substrate, highly desirable for promising applications such as catalysis and plasmonics. The mechanistic studies reveal that the concentration of Ag+ in the diffusion layer nearby the surface, controlled by the magnitude and duration of voltage, is critical in governing the nanoparticle formation (<1.3 mM) and its dimensional adjustability.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号